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ABSTRACT
Flash memory overcomes some key shortcomings of hard disk drives
(HDDs), including faster access to non-sequential data (when not
degraded by garbage collection (GC) overheads) and lower power
consumption. Economic forces, driven by the desire to introduce
flash into the enterprise market without changing existing software-
base, have resulted in the emergence of solid-state drives (SSDs),
flash packaged in HDD form factors and capable of working with
device drivers and I/O buses designed for HDDs. Unlike the use
of DRAM for caching or buffering, however, certain idiosyncrasies
of SSDs make their integration into HDD-based systems non-trivial.
Flash memory suffers from limits on its reliability, is an order of
magnitude more expensive than the disk, and can be sometimeseven
slower than the HDD (due to excessive GC induced by high intensity
of random writes). Given the complementary properties of HDDs
and SSDs in terms of cost, performance, and lifetime, the current
consensus among several storage experts is to view SSDs not as a
replacement for HDD but rather as a complementary device within
the storage hierarchy. We design and evaluate such a hybrid system
calledMixedStoreto provide: (a) improved capacity planning tech-
niques to administrators with the overall goal of operatingwithin
cost-budgetsand (b) improved performance/lifetime guarantees dur-
ing episodes of deviations from expected workloads throughthree
novel mechanisms:(i) adaptive wear-leveling, (ii) write-regulation
and (iii) fragmentation busting. We implement and validate a sim-
ulator for MixedStore and evaluate its efficacy using well-regarded
enterprise-scale storage traces. As an illustrative example of Mixed-
Store’s efficacy, it is able to reduce the average response time for
an enterprise scale random-write dominant Financial Traceby about
71% as compared to a HDD-based system. A preliminary investi-
gation of adaptive wear-leveling allows us to extend the useful life-
time of SSD by about 33% in the presence of unanticipated bursts in
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I/O, thus opening up new challenges in the design of efficientwear-
leveling algorithms.
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1. INTRODUCTION
Hard disk drives (HDDs) have been the preferred media for data

storage in enterprise-scale storage systems for several decades. The
disk storage market totals approximately $34 billion annually and is
continually on the rise [48]. Manufacturers of HDDs have been suc-
cessful in ensuring sustained performance improvements while sub-
stantially bringing down the price-per-byte. During the past decade,
the maximum internal data rate (IDR) for hard disks has witnessed
a 20-fold increase resulting from improvements in rotational speeds
(RPM) and storage densities; seek times have improved by a fac-
tor of 4 over the same period. However, there are several short-
comings inherent to HDDs that are becoming harder to overcome
as we move into faster and denser design regimes. First, designers
of HDDs are finding it increasingly difficult to further improve the
RPM (and hence the IDR) due to problems of dealing with the result-
ing increase in power consumption and temperature [7, 17, 28]. Sec-
ond, any further improvement in storage density—another way to in-
crease the IDR—is increasingly harder to achieve and requires sig-
nificant technological breakthroughs such as perpendicular record-
ing [44, 34, 8]. Third, and perhaps most serious, despite a variety
of techniques employing caching, pre-fetching, scheduling, write-
buffering, and those based on improving parallelism via replication
(e.g., RAID), the mechanical movement involved in the operation
of HDDs can severely limit the performance that hard disk based
systems are able to offer to workloads with significant randomness
and/or lack of locality. Specific to our interest in this paper, in an
enterprise-scale system,consolidation(e.g., as proposed/explored
in [14]) can result in the multiplexing of unrelated workloads impart-
ing/exaggerating the randomness. Furthermore, such consolidated
workloads are likely to exhibit degraded temporal and (moreseri-



Table 1: Performance, lifetime, cost comparison among different
storage media.

Media Access Time (µs) Lifetime Cost($/GB)

DRAM 0.9 N/A 125
SSD (45) Read , (200) Write 10K-1M Erase Cycles 25
HDD < 5500 MTTF=1.2Mhr 3

Table 2: Specification of the tested storage device.
MTron SSD Western Digital HDD

Model MSP 7000 Raptor X
Flash Type/RPM SLC 10,000

Capacity 16GB 150GB
Interface SATA 1.5GB SATA 1.5GB

ously for HDD-based systems) spatial locality, thereby potentially
adversely affecting performance [14, 15].

Alongside improvements in HDD technology, significant advances
have also been made in various forms of solid-state memory such
as NAND flash [2], magnetic RAM (MRAM) [43], phase-change
memory (PRAM) [19], and Ferroelectric RAM (FRAM) [46]. Solid-
state memory offers several advantages over hard disks: lower ac-
cess latencies for random requests, lower power consumption, lack
of noise, and higher robustness to vibrations and temperature. In
particular, recent improvements in the design and performance of
NAND flash memory (simplyflashhenceforth) have resulted in its
becoming popular in many embedded and consumer devices. Small
form-factor HDDs have already been replaced by flash in some con-
sumer devices like music players, PDAs, digital cameras, etc. Flash
has, however, only seen limited success in the enterprise-scale stor-
age market [32]. Although (i) the aforementioned advances in flash
technology and (ii) its dropping cost-per-byte [11] had ledseveral
storage experts to predict the inevitable demise of HDDs [12], flash
has so far not been able to make inroads into the enterprise-scale
storage market to the extent expected [32].

Solid-state Drives. Borrowing a few sentences from an excellent
paper on this topic by Leventhal [32],“The brunt of the effort to
bring flash to primary storage has taken the form of solid-state disks
(SSDs), flash memory packaged in hard-drive form factors andde-
signed to supplant conventional drives. This technique is alluring
because it requires no changes to software or other hardwarecom-
ponents, but the cost of flash per gigabyte, while falling quickly, is
still far more than hard drives. Only a small number of applications
have performance needs that justify the expense”.1 As evidence of
this, major storage vendors producing flash-based large-scale stor-
age systems such as RamSan-500 from Texas Memory Systems,
Symmetrix DMX-4 from EMC, ioDrive from ioFusion, etc. are
catering only a select class of applications such as large database
servers rather than the general enterprise storage market.

Table 1 (all values are based on [32]) presents a comparison of
the performance, lifetime, and cost of representative HDDs, SSDs,
and DRAM used in the enterprise. There are several importantim-
plications of how these properties compare with each other.Flash
technology possesses a number of idiosyncrasies that have hindered
the SSD from replacing HDD in the general enterprise market.First,
it is evident that there exists a huge gap between the Cost/GBof
HDDs and SSDs.2 Second, unlike HDD or DRAM, SSDs possess a

1We will use the termsSSDandflashinterchangeably in the rest of
this paper.
2A similar gap exists between SSD and DRAM. Furthermore, it
is projected to worsen in the near future: up to a factor of 13 by
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Figure 1: A comparison of the performance and lifetime charac-
teristics of representative SSD and HDD. Although MTTFs for
HDDs tend to be of the order of several decades, recent analy-
sis has established that other factors (such as replacementwith
next, faster generation) implies a much shorter actual lifetime
and hence we assume a nominal lifetime of 5 years in the enter-
prise. Note that Seq., Rand., Wr., and Rd. denote Sequential,
Random, Write, and Read. I/O request size in (d) is a page size
(2KB). Each bar in (a) is shown with 99% confidence interval.

huge asymmetry between the speeds at which reads and writes may
be performed. As a result, the throughput a SSD offers a write-
dominant workload is lower than for a read-dominant workload.
Third, flash technology restricts the locations on which writes may
be performed—a flash location must beerasedbefore it can be written—
leading to the need for a garbage collector (GC) for/within an SSD.
We will elaborate on these properties of flash in Section 2. Cer-
tain workload characteristics (in particular, the presence of random-
ness) increase the fragmentation of data stored in flash memory,
i.e., logically consecutive sectors become spread over physically
non-consecutive blocks on flash. This exacerbates GC overheads,
thereby significantly slowing down the SSD—even to an extentwhere
it operates slower than a HDD! [29]. Furthermore, this slowdown
is non-trivial to anticipate. A given set of random writes may them-
selves experience good throughput, but increase fragmentation, thereby
degrading the performance of requests (read or write) arriving much
later in future. Finally, to further complicate matters, unlike HDDs,
SSDs have a life-time that is limited by the number of erases per-
formed. Therefore, excessive writing to flash, while potentially use-
ful for the overall performance of a flash-based storage system, lim-
its its lifetime. This becomes an important concern in an enterprise-
scale employing flash if its workload is write-intensive.

Motivation for MixedStore. From the above description, it should
be clear that SSDs are fairly complex devices. Their peculiar prop-

2010 [1]. This rules out major changes in the role played by DRAM
in future systems that employ SSDs. DRAM will continue to retain
both of its important roles related to caching and buffering. There-
fore, we will not compare these two devices in the rest of thispaper.



erties related to cost, performance, and lifetime make it difficult
for a storage system designer to neatly fit them between HDD and
DRAM. To illustrate the complexity of the relationship between HDD
and SSD, we perform a simple experiment using the devices de-
scribed in Table 2. We send raw I/O requests to these actual de-
vices and measure throughput and access latencies. Next, weuse
our MixedSim simulator (described in detail in Section 5.1)to esti-
mate the useful lifetime of flash-based SSD in MixedStore.

As has been observed in other recent research, under certainwork-
load conditions, an SSD can perform worse than the HDD [29]. A
look at Figures 1(a)-(c) provides an illustration of such behavior
and calls for careful design to gainfully utilize them in conjunction
with HDDs in the enterprise. The degrading lifetime with increased
write-intensity, as shown in Figure 1(d), may result in premature re-
placement of these devices, adding to deployment, procurement, and
administrative costs. Note that we have picked a lifetime of5 years
for a HDD just for illustrative purposes. An excellent studyof the
useful lifetimes of disks based on data from real enterprise-scale sys-
tems appears in a paper by Schroeder and Gibson [45]. Finally, the
low throughput offered by SSDs to random write-dominated work-
loads (Figure 1(c)), which are frequently encountered in enterprise-
scale systems [29], necessitates intelligent partitioning of data in
such hybrid environments while ensuring that the management costs
do not overwhelm the performance improvements. As already al-
luded to and explained in more detail in Section 4, compared to the
HDD, an SSD require a longer history to be incorporated into aper-
formance predictor. Modeling these characteristics is an unexplored
area and a significant part of our work as well as the foundation of
the overall functioning of MixedStore.

Research Contributions. This paper makes the following specific
contributions.

• We propose MixedStore, a simplified hybrid storage system con-
taining HDDs and SSDs sharing the I/O bus. Besides this hard-
ware, MixedStore comprises: (i) acapacity planner(MixPlan
henceforth) that makes long-term resource provisioning decisions
for the expected workload; it is designed to optimize the cost of
equipment that needs to be procured to meet desired performance
and lifetime needs for the workload and (ii) adynamic controller
(MixDyn henceforth) whose goal is to operate the system in de-
sirable performance/lifetime regimes in the face of deviations at
short time-scales in workload from those anticipated by MixPlan.

• We develop simple statistical models that MixPlan employs.These
models are used in conjunction with MixedSim3 (a simulator we
have developed for MixedStore by enhancing DiskSim [13]) to
validate the efficacy of MixPlan for a variety of well-regarded
real-world storage traces. We expect MixPlan to provide “rules-
of-thumb” to administrators of hybrid storage systems whenmak-
ing provisioning decisions. As an illustrative result, MixPlan is
able to identify close to minimum SSD capacity needed to meeta
specified performance goal for a realistic random-write dominant
workload (Financial Trace [41]).

• We implement MixDyn in our simulator. In a MixedStore pro-
totype, MixDyn would have two components: (a) an enhanced
block device driver that employs online statistical performance
and lifetime models for SSD (and a performance model for HDD)
to dynamically partition incoming workload among the SSD and
HDD, and (b) two algorithms within the SSD controller (specif-

3Although our simulator is ready for sharing with other researchers,
we are unable to provide its URL due to double-blinded review.
The name of our simulator has been changed to preserve anonymity.
However, reviewers interested in our code and data are welcome to
approach us with the permission of the chairs.

ically, within the FTL layer) including reduction of fragmenta-
tion within the flash (fragmentation buster) and a novel concept
of adaptive wear-leveling. As an illustrative result of our empir-
ical evaluation of the efficacy of MixDyn, it is able to prolong
the life of SSDs in MixedStore by about 33% in the face of an
unexpected increase in I/O activity.

• Finally, we present ideas on how MixPlan and MixDyn could act
in concert and present a preliminary validation and evaluation of
all components of MixedStore.

Road-map. The rest of this paper is organized as follows. In Sec-
tion 2, we present the basics of flash technology and discuss relevant
related work. Section 2.2 provides a bird’s eye-view of the overall
MixedStore architecture and how its two components, MixPlan and
MixDyn, interact. In Sections 3 and 4, we describe these compo-
nents and then evaluate them individually as well as when acting
together in Section 5. Finally, we present concluding remarks in
Section 6.

2. BACKGROUND AND OVERVIEW

2.1 Background on Flash

Basics of Flash Memory Technology. Flash is a unique storage de-
vice since unlike the HDD and volatile memories, which provide
read and write operations, it also provides anerase operation[39].
Salient characteristics of these operations are as follows: Erase op-
erations are performed at the granularity of ablock which is com-
posed of multiplepages. A page is the granularity at which reads
and writes are performed. Each page on flash can be in one of three
different states: (i)valid, (ii) invalid and (iii) free/erased. When no
data has been written to a page, it is in the erased state. A write
can be done only to an erased page, changing its state to valid. Erase
operations (1.5ms) are significantly slower than reads/writes. There-
fore, out-of-placewrites are performed to existing free pages along
with marking the page storing the previous version invalid.Addi-
tionally, write latency can be higher than read latency by upto a
factor of 4-5. The lifetime of flash memory is limited by the num-
ber of erase operations on its cells. Each memory cell typically has
a lifetime of 10K-1M erase operations [10].Wear-levelingtech-
niques [23, 25, 33, 6] are used to delay the wear-out of the first
flash block. The time-granularity at which wear-leveling iscarried
out impacts the variance in the lifetime of individual blocks and also
the performance of flash: the finer the granularity, the smaller the
variance in lifetime.

The Flash Translation Layer (FTL). The FTL is a software layer
that translates logical addresses from the file system into physical ad-
dresses on flash FTL helps in emulating flash as a normal block de-
vice by performing out-of-place updates which in turn helpsto hide
the erase operation in flash. The mapping table is stored in a small,
fast SRAM. These FTLs can be implemented at different granulari-
ties of how large an address space a single entry in the mapping table
captures. Page-based FTLs map the logical page number of there-
quest sent to the device from the upper layers such as file system
to any physical page on flash. However, such translation requires a
large mapping table to be stored in SRAM. At the other extreme, in a
block-level FTL scheme, only the logical block number is translated
into a physical block number whereas the logical page numberoff-
set within the block remains fixed, thus reducing the mappingtable.
However, since a given logical page may now be placed only in a
particular physical page within each block, the possibility of finding
such a suitable page (at this fixed offset) increases.

To address the shortcomings of the above two extreme mapping
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Figure 2: Depiction of various components of MixedStore andhow they interact.

schemes, researchers have come up with a variety of alternatives.
Although many schemes have been proposed [20, 9, 30, 24, 31],
they share one fundamental design principle. Each of these is ahy-
brid between page-level and block-level schemes. They logically
partition their blocks into two groups -Data BlocksandLog/Update
Blocks. Data blocks form the majority and are mapped using the
block-level mapping scheme whereas the log blocks are mapped us-
ing a page-level mapping style. A recent page-based FTL scheme
called DFTL [16] utilizes temporal locality in workloads toover-
come the shortcomings of the vanilla page-based scheme by stor-
ing only a subset of mappings (likely to be accessed) on the limited
SRAM and stores the remainder on the flash device itself. We em-
ploy DFTL in our evaluation of MixedStore.

2.2 Overview of MixedStore
Figure 2 depicts the interaction between various components of

MixedStore. Besides the storage hardware (HDDs, SSDs, and I/O
buses) shown in the figure, MixedStore consists of two major soft-
ware components. The first of these is a long-term resource provi-
sioner called MixPlan. We envision MixPlan to be a tool that would
enable storage administrators to provision both kinds of devices in
cost-effective ways. The decision-making of MixPlan wouldoccur
at coarse time-scales (months to years) corresponding to when pro-
curement and deployment decisions are made. MixPlan employs
simple statistical models to make its provisioning decisions,assum-
ing a priori knowledgeof key characteristics of the workload ex-
pected till its next invocation. MixPlan is intended to cost-effectively
provision devices to allow MixedStore to (i) adhere to the perfor-
mance needs of hosted workloads and (ii) meet useful lifetime re-
quirements specified by the administrator, under these workload as-
sumptions. We elaborate on various components of MixPlan inSec-
tion 3. The second component of MixedStore is a dynamic con-
troller (MixDyn) that operates at significantly finer time-scales (mil-
liseconds to minutes). MixDyn employs statistical models for per-
formance of SSD and HDD to make dynamic request partitioning
decisions—these decisions are made at request-level granularity (mil-
liseconds to seconds). Additionally, it employs novel techniques for
data management within the SSD (write regulation, fragmentation
busting, and adaptive wear-leveling—all to be elaborated in Sec-
tion 4) that operate at the granularity of several minutes tohours.

Intuitively, the components of MixDyn operate collectively to take
corrective data management decisions in MixedStore to adhere to
desired performance and lifetime needs despite (i) provisioning er-
rors made by MixPlan and (ii) deviations in workload characteristics
and device behavior.

2.3 Related Work

Flash as Cache and Write-Buffer. A lot of research has been con-
ducted to improve performance of HDDs using non-volatile mem-
ory. eNVy [49] uses non-volatile memory for data storage wherein
battery-backed SRAM is used to reduce the write overhead. MEMS [47]
has also been exploited to improve disk performance. Storage archi-
tecture in which flash is used as a conventional disk cache hasbeen
explored in [36]. Our work goes beyond merely using flash as a
cache/write-buffer—rather than treating flash as asubordinate to the
disk, MixedStore views these ascomplementarystorage media. Bis-
son et al. [5] have explored the use of a flash-based NVRAM as a
write buffer to reduce write latency of hard disks for desktop envi-
ronments. They employ I/O redirection to reduce seeking overhead
from disk by directing requests likely to incur long seeks tothe on-
disk NVRAM. We view the MixDyn component of our system as
conceptually close to Bisson et al.’s work and would be interested
in comparing MixDyn with their I/O redirection technique inthe
future. A key difference is that our flash model (developed inSec-
tion 3) additionally captures the fragmentation within flash (caused
by random writes) and incorporates it into its redirection decision-
making. This mechanism will be described in Section 4.

Flash-specific Improvements. Flash Translation Layer (FTL) is one
of core-engines in a flash-based SSD. The state-of-the-art FTLs [9,
30, 24, 31] are based on log-buffer based approaches and optimize
performance by trying to reduce costly GC overheads. Another or-
thogonal approach of exposing flash-based devices to the filesystem
has been proposed. JFFS2 [22] and YAFFS2 [50] are the most pop-
ular file systems optimized for flash memories. Kim et al. [27]have
developed a flash device buffer management scheme to reduce frag-
mentation caused by random writes. Different SSD designs includ-
ing interleaving requests to obtain parallelism and ganging etc. have
been proposed to improve flash device performance [40]. Further,
Managed Flash Technology (MFT) [35] developed by EasyCo is a



flash SSD acceleration software which tries to solve flash random
write problem by converting random writes into sequential writes
at block driver level. Transactional flash (namedTxFlash) recently
proposed by Prabhakaran et al. is a novel SSD that uses flash mem-
ory and exports a transactional interface to the higher-level software
[42].

Flash in the Enterprise. Kgil et al. [26] have proposed a new ar-
chitecture namedFlashCachewhere they consider replacing a large
DRAM with a combination of a smaller DRAM and NAND-based
Flash. Their goal is to save memory power consumption while meet-
ing performance requirement by using larger flash and a smaller
DRAM. Sun Micro-systems has proposed a storage architecture in-
corporating flash-based SSDs as intent-log devices and readcaches
providing improved performance along with reduced power con-
sumption [32]. They propose to use their ZFS file system [51] as
an interface to these SSDs. We view Sun’s proposed hybrid archi-
tecture as the closest in essence to MixedStore and believe that the
models and techniques developed here are worth implementing and
evaluating in the context of their system. Lee et al., [29] proposed an
in-page logging approach in a flash-based DBMS to reduce random
write overhead by updating in-place in the database buffer and hence
reducing garbage collection overhead. A key contribution in this pa-
per is the observation that workloads with extensive randomness can
cause an SSD to perform worse than a HDD. We find similar results
in our evaluation and build models that attempt to capture this aspect
of an SSD’s operation.

Finally, in a recent work from Microsoft Research, Narayanan et
al. [38] have also looked at capacity provisioning in hybridstorage
systems by utilizing a number of real data center traces available to
them. Their work explores the cost-benefit trade-offs of various flash
and disk capacities/configurations for these real traces. There are
several key differences between our contributions. First,we do not
investigate what they call a “two-tiered” hybrid architecture (using
SSDs as write buffers/read caches) partly because such ideas have
already been explored in the papers cited earlier. Second, we do not
explicitly capture power consumption in our formulation ofMixPlan
(for reasons described in Section 3; indeed as we shall see, our find-
ings are similar to theirs on this front). Third, while they admit that
flash wear-out needs to be considered while using it as a writebuffer,
they do not explore any specific ways of doing this. We incorporate
this in the form of lifetime budgets in MixPlan and our dynamic
workload partitioning (MixDyn) employs a variety of techniques
to adhere to these budgets. Finally, our study goes beyond capac-
ity planning—MixDyn employs a combination of model-drivenas
well as reactive techniques to operate our hybrid system under given
performance/lifetime budgets despite varying workloads.Overall,
their work is complementary to MixPlan. Unlike their evaluation
with real traces, we are admittedly restricted in our evaluation to
publicly-available benchmarks and traces and would greatly benefit
from access to their real traces.

3. CAPACITY PLANNING: MIXPLAN
Given the large price gap between SSDs and HDDs, it is use-

ful to be able to determine appropriate capacities of these devices
for the workload the system expects to support. We define this
process of determining the right size of devices in MixedStore as
capacity planning. As will be illustrated in Figure 9, both under-
provisioning and over-provisioning of flash memory leads toineffi-
cient storage utilization, thus adversely impacting the cost-to-benefit
ratio for MixedStore. Therefore, the goal of capacity planning is to
minimize this discrepancy so that overall storage investment cost can
be optimized.

3.1 Problem Formulation
The objective of capacity planning is to minimize the cost of

MixedStore (deployment, management, maintenance etc.) while meet-
ing the service level agreements. These constraints can vary from
guaranteeing some minimum performance requirements to reducing
management and re-deployment costs, ensuring system reliability
etc. For the purpose of our study, we try and minimize the deploy-
ment cost (in terms of $) subject to a combination of both perfor-
mance and re-deployment constraints. We use average systemre-
sponse time as a metric of MixedStore’s performance and termthis
metric as the system’sPerformance Budget. As described in Sec-
tion 2, the blocks in SSDs become unreliable beyond 10K-1M erase
cycles. This poses a significant challenge for a system administra-
tor whose objective is to keep system re-deployment frequency and
costs under control. We capture these objectives in terms ofa Life-
time Budgetfor the system, which is the time between successive ca-
pacity planning decisions and equipment procurement/installation.

We formulate our capacity planning problem as a means of mini-
mizing the cost of acquiring/installing MixedStore while meeting the
administrator/workload-specified performance (PBudget) and useful
lifetime budget (LBudget). Let CSSD indicate the cost of flash-
based SSDs and andCHDD indicate the cost of HDDs in Mixed-
Store. Apart from these, costs associated with power consumption,
thermal consumption (cooling), other maintenance and management
activity form the recurring costs denoted byCRecur. Then the total
MixedStore costCMixedStore is the sum of these individual costs.
Equation 1 shows the formal description of capacity planning. It is
easily seen that the above optimization problem reduces to minimiz-
ing the cost of SSD for fixed size of HDD available in a MixedStore
system.4

Minimize CMixedStore

Subject to



PMixedStore ≥ PBudget

LMixedStore ≥ LBudget
(1)

WhereCMixedStore=CSSD + CHDD + CRecur

We have shown in another work (reference withheld to maintain
anonymity) that the savings in power consumption accrued byuti-
lizing SSDs in enterprise-scale environment are not significant. The
same has been corroborated by Narayanan et al. [38] in their recent
work. Furthermore, information on how the management/ mainte-
nance costs for HDDs and SSDs compare is still sparse and incon-
clusive. Hence, we do not consider recurring costs (CRecur) in our
current work. The large difference in costs of HDDs and flash-based
SSDs (as shown in Table 1) allows us to reduce the capacity planning
problem to SSD capacity determination problem for a known sized
(constant) HDD-based storage. However, the performance and life-
time of flash-based SSD is highly dependent on not only the work-
load characteristics but also the internal intricacies of flash such as
design of FTL, efficiency of GC etc. This provides a mandate for the
design of a robust capacity planner (MixPlan) tool for use bystorage
system designers. In the next sub-sections, we describe thestatisti-
cal models utilized by MixPlan to provision SSDs in MixedStore.

3.2 Modeling Performance and Lifetime of Flash
Memory for MixPlan

We employ a "black-box" modeling approach for estimating a
given SSD’s useful lifetime and performance. Our model makes no
4A key limitation and difficulty that the reader should note about
our capacity planning is that it provisions SSD capacity fortheen-
tire expected workload rather than the subset of it that is expected to
be incident on the SSDs. Clearly, MixPlan over-provisions SSD ca-
pacity, potentially heavily. Improving our provisioning on this front
is non-trivial and part of ongoing work.



assumptions about the inner configurations (such as FTL employed,
SRAM cache size etc.). We do find its efficacy varies depending
on the internals of the SSD. For example, the predictor performs
better with our page-based like FTL than other state-of-the-art hy-
brid FTLs. We do not elaborate on these here due to space con-
straints. For this purpose, we need to identify statistically signif-
icant workload characteristics that impact the SSD’s lifetime and
performance. Performance is directly impacted by data fragmenta-
tion caused by random writes which invoke costly GC operations.
Moreover, high write intensity increases the number of erase op-
erations required to reclaim invalid space on flash, thus reducing
lifetime of blocks. Based on these observations, we consider the
following workload characteristics as significant independent vari-
ables: (i) average read/write ratio, (ii) spatial localitycaptured in the
form of average sequentiality among requests, (iii) average request
inter-arrival time, (iv) average request size, and (v) flashutilization
defined as the ratio of the working set size to the total flash size.

3.3 Regression-Based Modeling
Using multiple linear regression, we first find significant predictor

variables which affect the variables being predicted: (i) average sys-
tem response time (ms) for performance budget, (ii) averageblock
erase rate (erases/second) for lifetime budget. The underlying as-
sumption on this linear regression modeling approach is an assump-
tion of linearity. It is assumed that the relationship between variables
is linear. Moreover, there is a normality assumption that the residu-
als follow normal distribution). We start with the general approach
in multiple regression of finding significant predictor variables while
plugging in as many predictor variables as we can think of. Inor-
der to avoid multicollinearity problems, we also perform correlation
analysis on predictor variables to ensure that they are all independent
variables.

Performance Model for SSD. We use average I/O system response
time (Ravg) as a predictor of flash performance. I/O system response
time represents the time interval between the issuance of request
to the SSD by the I/O driver and its completion notification tothe
driver. It includes queuing delay, bus delay and controlleroverhead
in the device. We first experimented with a multiple linear regression
based model. Upon finding this model unsatisfactory, we moved
towards a slightly more complicated multiple log-linear model [21].
It can be represented as

log(Ravg) = a0 +
n

X

i=1

ai · Wavg(i) + ǫ1 (2)

where (Wavg) represents the average of a particular workload
characteristic selected from a set of n parameters discussed earlier
(Section 3.2) andǫ1 is a small error. The coefficients (a0, a1, ... ,
an) are estimated during the learning phase of the experiments.

Lifetime Model for SSD. Erase rate (block erases per second) de-
noted byEavg, represents the lifetime of a flash device since each
block typically has a life of about 10K-1M erase cycles [10].As in
the case of performance modeling, we start by fitting a multiple lin-
ear regression model. Again, we observe that a multiple log-linear
regression technique, similar to the one used for performance budget
is able to model the lifetime budget. The similarity betweenthe two
models arises from the fact that higher response times are a function
of garbage collection which require block erases and hence impact
lifetime. Thus, the lifetime model can be represented as

log(Eavg) = b0 +
n

X

i=1

bi · Wavg(i) + ǫ2 (3)
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Figure 3: Validation of performance and lifetime models com-
pared with values measured using MixedSim. Each bar of
MixedSim in (a) is shown with 99% confidence interval. The 99%
confidence intervals of MixedSim in (b) are very small and hence
not shown.

where (Wavg) represents the average of a particular workload
characteristic selected from a set of n parameters discussed earlier
(Section 3.2) andǫ2 is a small error. The coefficients (b0, b1, ... ,bn)
are estimated during the learning phase of the experiments.

3.4 Validation
In this sub-section, we validate our models by comparing against

the actual values measured using MixedSim. We generate a large
number of synthetic traces by varying workload characteristics de-
scribed in Section 3.2 to train the models and randomly select 900
of these traces to form our training set. The adjusted R-square 5 is
found to be around 90% for both the multiple log-linear models [21].
The average error rate is about 25% for the training set.

Table 3: Some of the synthetic write-only workloads
(W1,W2,W3,W4) used to train the performance and lifetime
models and a realistic Financial Trace workload used for eval-
uating the models.

Index
Sequentiality Request Size Utilization Inter-Arrival

(Ratio) (Sectors) (Ratio) (ms)

W1 0.10 41.54 0.89 322.18
W2 0.70 16.90 0.89 79.90
W3 0.30 115.71 0.94 80.24
W4 0.70 115.44 0.58 319.74

Financial 0.03 6.57 0.91 164.49

We validate our performance and lifetime models by comparing
their results with the corresponding values measured usingMixed-
Sim. Table 3.4 shows the salient characteristics of some of the syn-
thetic and real workloads. We choose write-only synthetic traces for
validation since flash performs very well for read dominant work-
loads. Moreover, lifetime is not an issue for such workloadssince
they encounter very few erase operations. For W2, the error in the
performance model is only about 4% whereas it rises to about 21%
for W3 which has the highest erase rate and response time values
(owing to large request sizes and low inter-arrival times) in the traces
shown. For the Financial trace [41], the observed performance as
well as lifetime errors are high. The major cause of this discrepancy
is that our black-box model assumes no information about thein-

5Adjusted R-square defines the proportion of variability that is ac-
counted for by a statistical model. Unlike R-square, it onlyincreases
if a newly added predictor statistically improves an existing model.



ternal state of the flash and hence is liable to errors. Arguably, by
incorporating more information about flash internals we canimprove
our model further. However, as explained in Section 2.2, forMixed-
Store, having a MixPlan suffices so long as MixDyn can handle the
inaccuracies in the former models. To summarize our validation,
we have demonstrated the possibility of developing a performance
and lifetime estimation methodology with reasonable accuracy with
simple log linear regression models.

3.5 Why MixPlan Alone Doesn’t Suffice
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Figure 4: Capacity planning for Financial-like trace. Note that
we increase arrival rate as shown in legends. "A" denotes that
the performance and lifetime budgets provisioned by MixPlan.
With increased workload arrival rate these guarantees are vio-
lated.

Workloads are known to exhibit variation from their predicted be-
havior. In such circumstances, capacity planning alone is not suffi-
cient to meet the lifetime and performance budgets. Figure 4(a)-(b)
show the impact of increased arrival rate on performance andlife-
time budgets for a write-dominant workload. If the system designer
had provisioned the system at point A to keep the flash lifetime
around a disk’s useful life while satisfying the performance needs,
these guarantees do not hold if the workload changes. With higher
intensity of writes, the garbage collector is invoked more often; thus
degrading the system’s performance. Moreover, it results in higher
number of block erases, reducing the flash lifetime. Thus, were-
quire additional sophisticated data partitioning mechanisms which
can dynamically adapt to these changing workload environments.
In the next section, we describe some techniques employed byour
dynamic controller (MixDyn) to meet the various budgets andthus
work in synchronization with MixPlan.

4. DYNAMIC CONTROLLER: MIXDYN
We have established the need for a fine-grained control mecha-

nism which should be able to manage the requests and hence ensure
sustained throughput from the storage system which is able to meet
our lifetime and performance budgets. In this section, we discuss the
core of MixDyn—the performance prediction module— and then
elaborate other components, namely(i) Fragmentation Buster, (ii)
Write Regulator, and(iii) Adaptive Wear-levelerwhich try to ensure
that the guarantees made by MixPlan are upheld.

4.1 Performance Prediction Model for SSD
The performance of the SSD is highly dependent on the work-

load incident on it. Since out-of-place updates are performed on the
flash, GC resulting from fragmentation has an important impact on
response time. We build upon our learning from capacity planning
and try to develop time-scale performance models suitable for the

MixDyn. Although the large-body of work on modeling disk per-
formance is of use here, there are certain salient novel aspects of
flash operation that MixDyn’s SSD model must capture. Perhaps
the most important such feature is that unlike a disk,an SSD per-
formance model needs to incorporate a much longer history, since a
large enough number of random writes (that might themselvesexpe-
rience good performance) might cause fragmentation over time and
the resulting GC invocation would then degrade the performance of
requests that arrive much later.

Again we start with identifying the crucial workload characteris-
tics which play a major role. However, contrary to the earlier Mix-
Plan performance model here, we work with a sliding window ofre-
quests. This sliding window acts as a short term history of requests
and enable us to make fair short term decisions. The main workload
characteristics used in the model are: (i)Average Read to write ratio
of a window of requests, (ii)Spatial locality—average sequential-
ity of a window of requests, (iii)Request inter-arrival time, and (iv)
Current request size. Since this performance model needs to make
predictions about the performance of requests in the immediate fu-
ture, and as seen how performance depends on long-term history, we
need to capture and preserve certain aspects of thecurrent stateof
the flash device. However, this information about state of the flash
device might require information about SSD internals that may not
be feasible (e.g., in the SSD that MixedStore assumes).

In order to build a feasible as well as efficient black-box perfor-
mance model, we use the history of previous device service times as
an indicator of flash device state. For simplicity, we use theaver-
age of the service times (Savg). Moreover, we use system response
time (Rcurrent) as a measure of flash device performance. Thus,
our multiple linear regression model can be represented as

Rcurrent = c0 + c1 · Wwindow + c2 · Savg + ǫ

Savg =

`
Pw

j=1
S(j)

´

w
(4)

whereǫ is a small error andWwindow is the workload during win-
dow w. The coefficients (c0, c1, c2) are estimated during a learn-
ing/training phase of our experiment which consists of halfof the
workload. We believe converting our learning-based prediction tech-
nique can be easily adapted to operate on-line, although we do not
evaluate that here.

4.2 Evaluation with Dynamism-Aware Perfor-
mance Prediction Model

Table 4: Statistics for Performance Prediction of Flash forFi-
nancial Trace. Correlation between all predictor variables are
almost zero.

Multiple R 0.98

R Square 0.98

Adjusted R Square 0.98

Standard Error 0.27

Observations 32289

Coefficients Standard Error P-value

Intercept 0.13145 0.002982131 0

Previous Device
0.01223 0.003517166 0.000505959

Service Time

Real/Write Ratio -0.66566 0.019041997 8.0937E-263

Sequentiality -0.78597 0.159642759 8.55189E-07

Inter-Arrival -0.00007 8.29538E-06 3.00991E-16

Request Size 0.12127 0.000381543 0

(a) Regression Statistics (b) Significance of Predictor Variables

We use the Financial trace [41] and TPC-H [52] workload to vali-
date our model. Contrary to our performance predictor for MixPlan,
our empirical evaluation suggests a simpler multiple linear regres-
sion to be satisfactory. For Financial trace, we observe themeasured
R-square value to be 98% (as shown in Table 4). We compare the
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Figure 5: Comparison of our dynamic SSD performance predic-
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99% confidence intervals are very small and hence not shown.
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Figure 6: Performance degradation due to fragmentation on
flash and subsequent improvement with fragmentation buster.
“Flush” indicates periods of migration activity from flash t o
disk. Each point is shown with 95% confidence interval.

accuracy of our model with a simple baseline—alast value-based
prediction model for SSD which uses the last service time value as
its prediction. Figure 5 demonstrates the superior prediction quality
of our model for both TPC-H and Financial trace. Our model is able
to predict the state of the flash better than the last value predictor and
hence shows much smaller error rate.
4.3 Fragmentation Busting

As described in Section 1, small random writes increase datafrag-
mentation on flash, thus exacerbating garbage collection overhead.
We demonstrate this impact in Figure 6 by alternating sequential and
small random write requests for synthetic workloads. Both "A" and
"C" are regions with sequential write activity. However, the presence
of random writes in region "B" leads to data fragmentation onflash,
thus increasing the average response time for requests in "C". In or-
der to prevent such fragmented zones on flash, we develop a flushing
methodology calledFragmentation Busting. As shown in Figure 6,
flushing some portion of these small random writes to disk (period-
ically moving 25% of random writes for this experiment), we can
reduce the variation in response times and improve the performance.

Workloads are known to exhibit periods of idleness between bursts
of requests [37] providing opportunities for fragmentation busting.
Lot of research has gone into developing techniques to identify and
utilize these idle periods. Specifically, Mi et al. categorized work-
loads based on idle periods into tail-based, body-based andbody+tail
based [37]. and found the presence of heavy-tailed inter-arrival times
in enterprise-scale workload implying the presence of significant
idle periods along with those of intense activity. Currently, we do not
incorporate any specific policy in our MixedStore design. Flushing
requires co-operation from the device since the effective mapping

tables are present within the device and are not exposed to outer
systems. Thus, only a part of the flushing mechanism, specifically
the scheduler, can be implemented with MixDyn. In order to decide
which data needs to be flushed, the device controller needs topin
the pages causing this fragmentation. We maintain a LRU (Least
Recently Used) list of the valid pages using the logical pagenumber
of the requests. This represents the cold data on flash and itsmigra-
tion to disk does not have any major impact on MixedStore’s per-
formance. When the idle period kicks in, the fragmentation buster
directs the flash controller to start flushing the data fragments. A
small DRAM-based buffer needs to be maintained so that any re-
quest to the data being migrated can be serviced. Since we flush
mostly cold data, such requests are rare. Moreover, since this activ-
ity can be delayed until an idle period is available, in this work we
consider it a pure background activity that does not interfere with
the servicing of requests and hence we ignore its possible degrading
effects on overall performance.

4.4 Handling Uncertainties in Enterprise-scale
Workloads

As described in (Section 3.5), one of the challenges in capacity
planning is the unpredictability in workloads. A prolongedand/or
recurring period of unanticipated random writes detrimentally im-
pact on lifetime of flash. In this sub-section, we develop techniques
for handling sudden unanticipated bursts in requests.

Write Regulation. The projections made by MixPlan are dictated
by normal workload characteristics and are subject to violations dur-
ing operation. The write regulator monitors the erase rate of blocks
and comes into action if sustained violations (due to unanticipated
write activity) are observed. This is essential to preservethe lifetime
budget requirements. On detecting violations, it starts toregulate the
writes being sent to flash by over-riding the decisions made by the
performance model in MixDyn. Currently, we use a policy which
randomly picks the requests being sent to flash and diverts them to
disk instead. As part of future work, we plan to develop more so-
phisticated models.

Adaptive Wear-Leveling. As described in Section 2, wear-leveling
requires swapping of data between blocks which have high erase
count with blocks which have relatively lower erase count. This
swapping operation results in additional erase operationswhich re-
duce the lifetime of blocks [6, 33]. These extra erases startto play
a significant role towards the end of a flash device’s life and in-
deed accelerate its death. Traditional wear-leveling algorithms de-
fine the lifetime of flash based on the reduction in the capacity of
the device as compared with the original capacity and hence aim
to achieve uniform distribution of erases across all blockson flash.
We propose a paradigm shift in this philosophy by defining theuse-
ful lifetime of flash in hybrid environment to be the time tillwhich
MixedStore is meeting the performance/lifetime guarantees. This
provides us the flexibility to allow wear-out of few blocks onflash by
temporarily halting wear-leveling mechanism if it helps inmeeting
the overall lifetime budget. We propose anadaptive wear-leveling
mechanism—a novel idea to the best of our knowledge—which, like
the write regulator monitors the erase rate of blocks and during peri-
ods of prolonged unanticipated write activity, co-ordinates with the
flash controller to prevent the extra erases caused by wear-leveling
by temporarily halting the leveling algorithm. Once normalI/O ac-
tivity starts (as projected by MixPlan to uphold the lifetime budget),
it allows the device to revert to its wear-leveling mechanism.

5. EVALUATION



5.1 Experimental Setup and Workloads

Workloads. Table 5 illustrates the characteristics of enterprise-scale
workloads used in our evaluation. We employ a write-dominant I/O
trace from an OLTP application running at a financial institution [41]
made available by the Storage Performance Council (SPC), hence-
forth referred to as theFinancial trace. We also experiment using
Cello99 [18], which is a disk access trace collected from a time-
sharing server (exhibiting significant writes) which was running the
HP-UX operating system at HP labs. TPC-H [52] is is an ad-hoc,
decision-support read dominant benchmark (OLAP workload)ex-
amining large volumes of data to execute complex database queries.
Finally, we also use a number of synthetic traces to study theefficacy
of MixPlan and MixDyn for a wider range of workload characteris-
tics than those exhibited by the above real-world traces.

Table 5: Enterprise-Scale Workload Characteristics. All values
are presented as average. Sequentiality refers to requeststo log-
ically consecutive addresses.

Workloads
Request Size Read Sequentiality Inter-arrival

(KB) (%) (%) Time (ms)

Financial (OLTP) [41] 4.38 9.0 2.0 133.50
Cello99 [18] 5.03 35.0 1.0 41.01

TPC-H (OLAP) [52] 12.82 95.0 18.0 155.56

Table 6: Default simulation parameters.
Flash Device

Parameter Value
Flash Type Large Block
Page (Data) 2KB
Page (OOB) 64B

Block (128KB+4KB)
Page Read Time 130.9 us
Page Write Time 405.9 us
Block Erase Time 1.5 ms

Interface SATA
Garbage Collector Yes

Wear-leveling Implicit/Explicit
FTL Type Page/DFTL

Hard Disk Drive (HDD)
Parameter Value

Disk Model
IBM

Ultrastar 36Z15
Interface SATA

Storage Capacity 36.7 GB
RPM 15,000

Seek Time 3.4 msec
Rotation Time 2 msec

Internal Tx Rate 55 MB/sec

MixedSim. We develop a simulation framework for integrated disk
and flash based storage systems, called MixedSim. It is builtby en-
hancing Disksim 3.0 [13], a well-regarded HDD simulator. Mixed-
Sim is designed with a modular architecture with the capability to
model a holistic storage environment. It is able to simulatediffer-
ent storage sub-system components including device drivers, con-
trollers, caches, flash devices, disks, and various interconnects. In
our integrated simulator, we add the basic infrastructure required for
implementing the internal operations (page read, page write, block
erase etc.) of a flash-based device. The core FTL engine is imple-
mented to provide virtual-to-physical address translations along with
a garbage collection mechanism.

Note on Our Evaluation Technique. MixedSim is capable of sim-
ulating multiple HDDs and SSDs. However, for our evaluationwe
consider a simple system consisting of a single HDD and SSD with
the parameters described in Table 6.6 We understand that our
evaluation does not capture benefits/concerns related to parallelism
and fault-tolerance that a system with multiple devices offers. We
view our current evaluation as a first step towards understanding per-
formance/cost/lifetime tradeoffs in MixedStore and hope to use the
6Simulations using current state-of-the-art HDDs such as Seagate’s
Cheetah15K and SSDs such as Intel’s X25-M SSD are part of our
future work.

lessons learnt here to expand our evaluation and understanding of
hybrid systems.

5.2 Validation of SSD Simulator
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Figure 7: Validation of our SSD Simulator. Note that in the
legends, Real SSD1, Real SSD2, FlashSim1, and FlashSim2 de-
note Mtron’s SSD, SuperTalent’s SSD, a SSD using a page-based
FTL, and a SSD using DFTL.The 99% confidence intervals are
very small and hence not shown.

The specifications available for commercial SSDs are insufficient
to model them accurately. For example, the SRAM cache size for
FTL mappings, the exact FTL scheme used, etc. are not disclosed.
Hence, it is difficult to simulate these commercial devices and we
make suitable assumptions for flash device as described in Table 6.
Using these parameters, we validate our flash device simulator (a
part of MixedSim) against commercial SSDs (MTron’s SSD [3] and
Super-Talent’s SSD [4]) forbehavioral similarity. For this purpose,
we send raw I/O requests to real SSDs and similar traces to our
flash device simulator to measure device performance. As shown
in Figure 7, our simulator is able to capture the performancetrend
exhibited by the real SSDs. With increasing sequentiality of writes
(Figure 7-(a)), the performance of real SSDs improves and Mixed-
Sim with different FTLs is able to provide similar characteristics. In
case of reads (Figure 7-(b)), real SSDs show much less variation, the
same is observed with our simulator. With high degree of random-
ness in writes (80% random in Figure 7-(c)) real SSDs demonstrate
long-tailed response time distribution (due to larger GC overhead)
and our simulator exhibits similar trend. We use page-basedFTL
along with other flash parameters for the rest of our evaluations. Fur-
thermore, by incorporating more knowledge about SSD internals,
we can further improve the validation of our flash simulator and this
is part of our future work.

5.3 Evaluation of MixPlan

5.3.1 Lifetime Budget Constraint
Table 7 shows the flash device lifetime for various capacity plan-

ning techniques with dynamism-aware data partitioning policy for



0.00

1.00

2.00

3.00

4.00

5.00

0 10 20 30 40 50
0.00

0.50

1.00

1.50

2.00

2.50

3.00

A
v
e

ra
g

e
 S

y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

C
o

s
t 

(F
la

s
h

 s
iz

e
 i
n

 G
B

)

Request Count x 1000

Over Provisioned

MixPlan Provisioned

Over Provisioned (Static)
MixPlan Provisioned (Dynamism-Aware)

Over Provisioned (Dynanism-Aware)

0.00

1.00

2.00

3.00

4.00

5.00

0 10 20 30 40 50
0.00

0.50

1.00

1.50

2.00

2.50

3.00

A
v
e

ra
g

e
 S

y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

C
o

s
t 

(F
la

s
h

 s
iz

e
 i
n

 G
B

)

Request Count x 1000

Over Provisioned

MixPlan Provisioned

Over Provisioned (Static)
MixPlan Provisioned (Dynamism-Aware)

Over Provisioned (Dynanism-Aware)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0 10 20 30 40 50
0.00

0.50

1.00

1.50

2.00

2.50

3.00

A
v
e

ra
g

e
 S

y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

C
o

s
t 

(F
la

s
h

 s
iz

e
 i
n

 G
B

)

Request Count x 1000

Over Provisioned

MixPlan Provisioned

Over Provisioned (Static)
MixPlan Provisioned (Dynamism-Aware)

Over Provisioned (Dynanism-Aware)

(a) Financial Trace (b) TPC-H (c) Cello99

Figure 8: Capacity Planning: MixPlan is not only able to reduce the cost but also improve performance in conjunction withdynamism
aware data partitioning. “Static” denotes a static data-partitioning policy where write requests larger than 4KB are assumed to be
sequential and are serviced by the HDD and others are serviced by SSD.

Table 7: Lifetime observations with different approaches. A
block is assumed to possess 10K reliable erase cycles.

Workload

Lifetime (Yr)
Over Provisioned MixPlan Under Provisioned

(2GB) (1GB) (0.5GB)
Financial 52.69 7.29 2.67
TPC-H 97.50 21.65 -

different workloads. TPC-H is read dominant and hence perfor-
mance budget is of greater concern than lifetime. For Financial
trace which is a write-dominant workload, we observe that under-
provisioning capacity would necessitate flash device replacement
within 3 years and hence would impact the overall lifetime budget
of MixedStore. We want the flash device to last till around theuseful
life of disk (approximately 5 years) and both over-provisioning and
MixPlan are able to achieve this mandate. Over-provisioning flash
capacity should reduce the request response times from flashdevice
since the garbage collection overheads will be reduced and hence
improve MixedStore performance as compared to MixPlan. How-
ever, as we observe in the next sub-section, benefits accruedwith
this extra flash are much less as compared to the increased cost due
to larger flash.

5.3.2 Performance Budget Constraint
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Figure 9: Capacity Planning for Financial Trace. “Static”
denotes a static data-partitioning policy where write requests
larger than 4KB are assumed to be sequential and are serviced
by the HDD and others are serviced by SSD. "Dyn. aware" de-
notes an intelligent data partitioning.

Figure 9 demonstrates the improvement in performance and re-
duction in cost using MixPlan along with dynamism-aware perfor-
mance predictor for Financial Trace. Both MixPlan and Over-provisioning
with static data partitioning are able to meet the lifetime guarantees
and improve the response time as compared to an under-provisioned
system. However, as illustrated in Figure 8(a), if dynamism-aware
data partitioner is utilized along with an over-provisioned flash, we
observe a slight improvement in performance as compared to Mix-
Plan. But this small improvement comes at an additional costof
bigger flash memory. Thus, the cost-to-benefit (Figure 9) ratio ad-
vocates the use of MixPlan for capacity planning in enterprise-scale
systems.

As shown in Figure 8(b), for read-dominant TPC-H [52], both
MixPlan and over-provisioned models provide similar performance.
This can be directly attributed to the fact that read-oriented work-
loads have very small amount of writes, thus the garbage collector
is invoked very infrequently and the service patterns remain similar
for both the capacity planning methodologies. Figure 8(c) clearly
illustrates the need for dynamism-aware data partitioner (MixDyn).
Static partitioning is unable to handle periods of bursts inCello re-
sulting in poor response times. On the other hand, MixDyn is able to
respond effectively to such situations and hence provide better per-
formance. Now we evaluate these benefits in the next sub-sections.

5.4 MixDyn Acting in Concert with MixPlan
We evaluate the performance of prediction models in MixDyn

along with our novel three mechanisms such as (i) adaptive wear-
leveling, (ii) write-regulation and (iii) fragmentation busting.

5.4.1 Dynamism-Aware Performance Prediction
We integrate our SSD prediction model with an admittedly sim-

ple disk performance predictor. We use a model based on the aver-
age response time observed during the training phase to predict disk
performance. The dynamic controller (MixDyn) partitions write re-
quests depending on the least response times predicted by the SSD
and HDD models. MixDyn maintains a table to store information
about the current location of data (device id) and updates itwhenever
some data is migrated from one device to the other. Read requests
are always serviced from the device which contains the data.

Figure 10(a) illustrates the performance of MixedStore incorpo-
rating the prediction models in MixDyn with respect to a disk-only
and flash-only system for the random write dominant Financial trace.
Although we observe good performance from flash device for ser-
vicing most requests, but some requests suffer from extensive GC



overhead thus exhibiting high response time on flash. Our predic-
tion model is able to move these requests to the disk and achieve
better performance for MixedStore. Moreover, MixedStore reduces
the average system response time by about 71% as compared to a
disk-only system. Similar performance improvement is observed for
Cello. However, the limitation of simplistic disk prediction model is
observed for Cello in Figure 10(b) where flash-only system improves
response time by about 20% as compared to MixedStore. The disk
prediction model (in MixedStore) is unable to capture the high in-
tensity of random writes resulting in incorrect predictionby Mix-
Dyn since some high latency requests are now inevitably wrongly
serviced from disk. We believe with a more sophisticated disk per-
formance prediction model will alleviate such discrepancies and im-
prove the performance of MixDyn. We plan to pursue this as part of
our future work.
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Figure 10: Performance of MixedStore compared with a disk-
only and a flash-only system. (a) and (b) show the CDF of sys-
tem response time for Financial Trace and Cello99.The 99%
confidence intervals are very small and hence not shown.

5.4.2 Adaptive Wear-Leveling
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Figure 12: Adaptive Wear-Leveling. 1x and 2x denote the nor-
mal and unanticipated increase (2 times speed-up) in I/O inten-
sity in the Financial trace. 1x-2x denotes a trace with regions of
normal and increased I/O activity. Normal wear-leveling refers
to continuously invoking wear-leveling algorithms irrespective
of the available useful lifetime of blocks on flash.

The lifetime projections made by MixPlan are subject to viola-
tions due to uncertainties (increased unanticipated I/O activity) in
the enterprise-scale workloads. Our novel adaptive wear-leveler helps
MixDyn in upholding these guarantees. Figure 12 shows the impact
of our adaptive wear-leveler on the Financial trace with modified
inter-arrival times to resemble a workload with periods of high I/O

activity. It halts the wear-leveling algorithm when it detects pro-
longed unanticipated I/O activity (we use static profiling to detect
these periods). As compared to the normal wear-leveling algorithm
which continuously performs leveling irrespective of the residual
lifetime of blocks, our adaptive algorithm is able to improve the use-
ful lifetime of flash by about 33%. This helps in delaying the need
for replacement and reducing re-deployment costs. This enables
MixDyn to achieve the lifetime guarantees as projected by MixPlan;
hence both our capacity planning and dynamic-controller tools act in
tandem to achieve the lifetime and performance budgetary require-
ments.

5.4.3 MixDyn at Work: A Microscopic Look
Figure 11 (next page) shows MixDyn at work for parts of the fi-

nancial trace. Our dynamic data partitioner is able to intelligently
partition the incoming requests, thus improving the systemresponse
time as compared to the static data partitioner. The fragmentation
buster is able to reduce the tail of the CDF of response time (Fig-
ure 11-(b)), thus reducing the number of requests that experience
high response time. We experiment with a write regulator that de-
tects increased I/O activity and consistently monitors theexpected
flash life through the lifetime model of MixPlan.

We experiment with two models of a static write rate regulator
that pick 25% or 50% (uniformly at random) of the requests being
sent to flash and redirect them to HDD during periods of higher-
than-expected I/O intensity. Let us call these policiesRed25 and
Red50, respectively.Figure 11-(c) shows that we are able to reduce
the flash block erase rate by about 25% while reducing the requests
being serviced by flash by about 21% usingRed25. An additional
19% reduction in the erase rate is observed usingRed50. However,
it results in an increase of 0.83ms in average system response time.
Thus, the rate of write regulation must be chosen judiciously so as to
meet the performance budget while ensuring that lifetime guarantees
are satisfied. Thus, MixDyn acting in concert with MixPlan isable
to judiciously utilize the different mechanisms to uphold the lifetime
and performance requirements.

6. CONCLUDING REMARKS
We developed an on-line capacity planner calledMixPlan that

used statistical models to provide storage administratorswith guide-
lines on provisioning a hybrid system in a cost-effective manner.
We then developed a dynamic controller,MixDyn, that used shorter
time-scale SSD and HDD models along with regulation of write-
rate to the SSD and a novel idea of adaptive wear-leveling within
the SSD to operate the storage system within regions of desirable
cost, performance, and lifetime budgets. We evaluated these sys-
tems using MixedSim with a variety of well-regarded benchmarks.
We found that MixedStore is able to reduce the average systemre-
sponse time by about 71% as compared to a HDD-based system fora
enterprise-scale Financial trace. Moreover, our innovative adaptive
wear-leveling mechanism was able to prolong the life of SSDsby
about 33% in the presence of unanticipated increase in I/O intensity.
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